Global stability for reaction-diffusion SIR model with general incidence function

Downloads

DOI:

https://doi.org/10.26637/mjm1002/004

Abstract

The aim of this work is to study the dynamics of a reaction-diffusion SIR epidemic model with a nonlinear general incidence function. The local stability of the disease-free equilibrium is obtained via characteristic equations. The global existence, positivity and boundedness of solutions for reaction-diffusion system with homogeneous Neumann boundary conditions are proved. We mainly use the technique of Lyapunov functional to establish the global stability of both disease-free and endemic equilibria. Numerical simulations are presented to illustrate our theoretical results by using a suitable discretization of the model.

Keywords:

SIR epidemic models, HBV model, immune, general incidence function, global stability, Lyapunov functional, reaction-diffusion

Mathematics Subject Classification:

65L03, 65L03, 34D20, 34D23
  • Dramane OUEDRAOGO Départment de Mathématique, Centre Universitaire de Banfora, Université Nazi BONI, Burkina Faso.
  • Idrissa IBRANGO Départment de Mathématique,Université Nazi BONI, Burkina Faso.
  • Aboudramane GUIRO Départment de Mathématique,Université Nazi BONI, Burkina Faso.
  • Pages: 139-150
  • Date Published: 01-04-2022
  • Vol. 10 No. 02 (2022): Malaya Journal of Matematik (MJM)

N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations, Journal of Differential Equations, vol. 33(2)(1979), 201-225.

K. Hattaf, A.A. Lashari, Y. Louartassi, And N. Yousfi, A delayed SIR epidemic model with general incidence rate, Electronic Journal of Qualitative Theory of Differential Equations, 3(2013), 1-9.

K. Hattaf And N. Yousfi, Global stability for reaction-diffusion equations in biology, Computers and Mathematics with applications, 66(2013), 1488-1497.

D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1993.

El Mehdi Lotfi, Mehdi Maziane, Khalid Hattaf, and Noura Yousfi, Partial Differential Equations of an Epidemic Model with Spatial Diffusion, Int. Journal of Partial Differential Equations, 2014.

El Mehdi lotfi, Mehdi Maziane, Marouane Mahrouf, Khalid Hattaf, and Noura Yousfi, Global stability of a diffused SIR epidemic model with general incidence rate and time delay, Int. Journal of Mathematical analysis, 10(17)(2016), 807-816.

M.A. Nowak, S. Bonhoeffer, A.M.Hill, R. Boehme, H.C. Thomas, H.C. Thomas, H. McDade, Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA 93(1996), 4398-4402.

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differentiel Equations,Vol. 44 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1983.

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, NJ, USA, 1967.

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, Berlin, Germany, 1983.

K. WAng, W. WAng, Propagation of HBV with spatial dependance, Math. Biosci., 210(2007), 78-95.

K. Wang, W. Wang, S. Song Dynamics of an HBV model with diffusion and delay, J. Theoret. Biol., 253(2008), 36-44.

S.L. WAng, X.L. Feng, Y.N. He, Global asymptotical properties for a diffused HBV infection model with CTL immune response and nonlinear incidence, Acta Math. Sci., 5(2011), 1959-1967.

R. XU, Z.E. MA, An HBV model with diffusion and time delay, J. Theoret. Biol., 257(2009), 499-509.

R. XU, Z.E. MA, Global stability of a SIR epidemic model with nonlinear incdence rate and time delay, Nonlinear Anal. RWA., 10(2009), 3175-3189.

J. YAng, S. LiAng, Y. Zhang, Travelling waves of a delayed SIR epidemic model with nonlinear incidence rate and spatial diffusion, PLoS ONE, 6(2011), e21128.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2022

How to Cite

OUEDRAOGO, D., I. . . . . . . IBRANGO, and A. GUIRO. “Global Stability for Reaction-Diffusion SIR Model With General Incidence Function”. Malaya Journal of Matematik, vol. 10, no. 02, Apr. 2022, pp. 139-50, doi:10.26637/mjm1002/004.